

from IPython.display import Video
Video("./CCSS2024Fig/ContinentalDrift2.mp4", width=1058, height=508)





${\bf \Omega_{BAM}}$ = $\begin{bmatrix} V_B & C_{BA} & C_{BM} \\ C_{AB} & V_A & C_{AM} \\ C_{MB} & C_{MA} & V_M \end{bmatrix}$
$\mathbf{W}({\bf z})^{t}_{ix} = exp[-\gamma({\color{red}[{\bf z}^{t}_{ix} - {\bf \theta^{t}}_{ix}\color{red}]^T} {\bf \Omega_{BAM}}^{-1} {\color{red}[{\bf z}^{t}_{ix} - {\bf \theta^{t}}_{ix}\color{red}]})]$
$ \underbrace{\begin{bmatrix} W({\bf z_{B}}^{t}_{ix}) \\ W({\bf z_{A}}^{t}_{ix}) \\ \vdots \\ W({\bf z_{M}}^{t}_{ix}) \\ \end{bmatrix} }_{\mathbf{W}}$ = $\underbrace{\begin{bmatrix} W({B}^{t}_{ix})^{*} \\ W({A}^{t}_{ix})^{*} \\ \vdots \\ W({M}^{t}_{ix})^{*} \\ \end{bmatrix}^{T} }_{\mathbf{W}}$ $\underbrace{\begin{bmatrix} V_{B} & C_{BA} & \dots & C_{BM} \\ C_{AB} & V_{A} & \dots & C_{AM} \\ \vdots & \vdots & \vdots & \vdots \\ C_{MB} & C_{MA} & \dots & V_{M} \\ \end{bmatrix}^{-1} }_{\mathbf{\Omega_{BAM}}}$ $\underbrace{\begin{bmatrix} W({B}^{t}_{ix})^{*} \\ W({A}^{t}_{ix})^{*} \\ \vdots \\ W({M}^{t}_{ix})^{*} \\ \end{bmatrix} }_{\mathbf{W}}$








\begin{equation} {\Large {z}^{i}_{j}}(x,t) = {\Large {f}(\bf{L})}(x,t), {\Large {f}:\mathbb{R}^{m} \rightarrow \mathbb{R}^{z}} \end{equation}
In this formulation, an individual’s $i$ phenotype in site $x$ and time $t$ is given by
\begin{equation} {\Large \bf{Z}^{i}}(x,t) = {\Large {f}(\bf{L}) = D[{f} (\bf{L})] = \bf{B} \bf{Y}}, \end{equation}\begin{equation} {\Large \bf{Z}^{i}}(x,t) = {\Large \bf{B}^{T} \bf{E} \bf{Y}} \end{equation}where $D({z}^{i}_{a})$ is the distance of abiotic trait of individual $i$ to its optimum, $\theta_{a}$ is the optimal value used as the mean of a normal distribution, $\sigma^{2}$ is the variance of the normal distribution, and $z^{i}_{a}$ is the value of the abiotic trait $i$ and $cdf$ is cumulative distribution function. The fitness of the abiotic trait of individual $i$ is then given by
\begin{equation} {\Large W(z^{i}_{a})}(x,t) = {\Large 1 - D({z}^{i}_{a})}(x,t) \end{equation}The strength of an interaction is a function of species-species coefficient and the phenotypic distance between the two individuals
\begin{equation} {\Large s_{z^{i}_{b} z^{j}_{b}}}(x,t) = {\Large (1 - D({z}^{i}_{b} z^{j}_{b})}(x,t)) \times {\Large \lvert c_{z^{A}_{b} z^{B}_{b}} \lvert} \times {\Large sign(c_{z^{A}_{b} z^{B}_{b}})} \end{equation}and the fitness function takes into account the selection coefficient as
\begin{equation} {\Large W(Z^{i})}(x,t) = {\Large 1 - ( (1 - W(Z^{i})(x,t)) \times s_A)} \end{equation}

